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AMact-An analytical approach toward numerical calculation of the three-dimensional turbulent 
boundary layer on a sharp cone at incidence under supersonic flow conditions is presented, fhc 
theoretical model is based on implicit finite-difference integration of the governing three-dimensional 
turbulent boundary-layer equations in conjunction with a three-dimensional scalar eddy viscosity model 
of turbulence. Comparison of the present theory with detailed experimental measurements of the three- 
dimensional turbulent boundary-layer structure (velocity and temperature profiles), as well as surface 

streamline direction (obtained via an oil-flow technique), reveals good agreement. 

NOMENCLATURE 

van Driest damping constant, 26Q; 
constant pressure specific heat for air, 
~ft~~s~~R~ 
scalar veluci ty function ; 
fluctuating static enthalpy; 

mean static enthalpy; 
laminar (molecular) thermal conductivity; 
inner law mixing length constant, 0.435; 

slant length of sharp cone; 
mixing length; 
free-stream Mach number; 
laminar Prandtl number for air, Cl-71 ; 
turbulent Prandtl number, 090; 
static pressure; 

free-stream static pressure; 
heat flux; 
specific gas constant for air, 1716 ft2/s2 “R; 
free-stream Reynolds number, pm U,&/p, ; 
body radius; 

V, 

ui, 
c 1 
w,, 

W‘, 
_ 
W, 
X, 

Y, 
YI> 

Greek letters 

mean static temperature; 
static temperature at outer edge of boundary 
layer ; 
stagnation temperature; 
reference temperature; 
wall temperature; 
free-stream static temperature; 
streamwise velocity component at outer edge 
of boundary layer; 
free-stream velocity; 
Buctuating streamwise vefocity component; 
mean streamwise velocity component; 

a, angle of attack; 

?, specific heat ratio for air, I .40; 

L sharp cone semivertex angle; 

E, eddy viscosity; 

&i9 eddy viscosity in inner region; 

EOP eddy viscosity in outer region; 

;I 
eddy thermal conductivity; 

outtx law mixing-length constant, 0090; 

K lam&u (molecular) viscosity; 

&, free+Iream laminar (molecular) viscosity; 

5, ?> 5, transformed coordinates defined by equations 

(28~30); 

P, fluctuating mass density; 
_ 
iA mean mass density; 

P3;-) free-stream mass density; 

51 shear stress; 

7ir.r wall shear stress; 

$2 
581 

combined normal velocity components accurd- 

ing to equation (6); 
fluctuating normal velocity component; 

mean normal velocity cctmponent ; 
crossflow velocity component at outer edge of 

boundary layer; 
fluctuating crossflow velocity component; 

mean crossflow velocity component; 
coordinate along body surface; 
coordinate normal to body surface; 

characteristic thickness of boundary layer in 
equatian (24). 

circumferential coordinate; 
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I?). 

(‘J,, 

streamline direction, tan- ‘(E/U); 

streamline direction at outer edge of boundary 
fayer, tan- ‘(ki$/U~,); 

(if,. streamline direction at body surface, 
tan ’ (~,,~~jt,,,~). 

Subscripts 

il. outer edge of boundary layer; 
max, maximum value; 

0, stagnation or total; 

ref. reference value; 

s, surface ; 
turh. turbulent: 

\v. wall ; 
x. x-direction ; 
4,. &direction; 

%0, free-stream. 

Superscripts 

fluctuating quantity; 

-. averaged quantity with respect to time. 

DEVEMPMENT of analysis techniques for the three- 

dimensional turbulent boundary layer must face the 
problem of how to accurately model the three- 

dimensional turbulent shear stress in a time-averaged 
Reynolds sense. The classical eddy viscosity-mixing 
length hypothesis by Prandtl applied to three-dimen- 

sional turbulent flows Cl] suggests that the eddy 
viscosity should depend only on the properties of the 
turbulence and a local eddy scale, i.e. the eddy viscosity 
should be a scalar function independent of coordinate 

direction. Implicit in this approach is the requirement 
that the directions of the three-dimensional turbulent 

shear stress components are the same as the directions 
of the corresponding mean velocity gradients. As shown 
by Bradshaw [2] through a three-dimensional kinetic- 
energy-of-turbulence approach, the directions of the 

shear stress components are not, in general, exactly 
the same as the directions of the corresponding mean 

velocity components. 
Recent analysis by Nash [3], Cooper [4], and Pierce 

and Klinksiek [5] concerning three-dimensional tur- 
bulent boundary layers in an incompressible flow 
indicate that use of the scalar eddy viscosity concept 
will lead to acceptable results when coupled to an 
accurate integration technique for numerical solution 
of the three-dimensional turbulent boundary-layer 
equations. Both Cooper and Pierce and Klinksiek 
applied implicit finite-difference approaches while 
Nash used an explicit finite-difference scheme which 
has recently been updated and improved [6]. The 
method of Nash has also been modified to include 
the effects of centrifugal and Coriolis forces for apph- 

cation to calculation of the incomprcssthie three- 
dimensional turbulent boundary layer on a helicopter 

rotor as reported in 17). An excellent summary of the 
st~Itc-of-th~-~lrt c~~ncerning thrcc-dirncns~~)l~~~l turbci- 

lent boundary-layer analysis of mcompresstbIc ttutd 
Ilow may be found in the recent book by Nash .md 
Pate1 [8]. 

With regard to the three-dimcnstotutl cornprcsstbi~ 
turbulent boundary-layer problem. littlc \vorh has been 
done to present. The three-dimcnsiori;lJ ~[~tl~pr~s~i~~lc 

turbulent bound~~ry-l~lyer equations have hccn dcrivcd 

by Braun [9] and V&o-Laurin [JO]. Several a~tcmpt~ 
to solve these equations using intcgrai tcchniqucs it, 
conjunction with the so-called small crnssllow ass;umJ~ 

tion (which uncouples the streamwise n~omcnttu~; 
equation from the crossflow mornentuiI1 eyuation) ha\<’ 
been made by Cooke [l I]. Smith [IZ]. and BradIe:, 
[ 131, as well as Braun and Vagho-Laur-in. ci~cd prc- 
viously. These integral approaches arc not cntrr~i; 
satisfactory because of the difficulties in adcquatci!, 
representing the crossflow velocity profile The ;tna~~~ 
by Hunt, Bushnell and Beckwith [ I4 1 i\ ihc first. :<I 

the author’s knowledge. to apply l~~~lr~:t~il~~ fiintf- 

diflercncc integration to the three-dintcnsion~il L~I~I- 
pressible turbulent boundary-layer equations. thi- 
work considers hypersonic how over ;L swept intinitt. 

cylinder-slab based on a scalar edd! viscosity moticl 
of thre~dimensi~~n~~l turbulence. 

The present paper reports on an ;tn;tl~tical invc,k 

g&ion and development of a finite-ditfcrcncc G&II- 
lation technique for the analysis of the three-dimen- 
sional compressible turbulent boundary layer ou ‘i 

sharp cone at angle of attack in a supersonic Row. I’hc 
sharp cone geometry at angle of attack is r>E ohviiru\ 
importance to ~tcr~)dynam~c and pr~~i?Ll~sl[~il cnginc 

applications. Specifically, the govcming three-dirncn- 
sional turbulent boundary-layer equations for :I con)- 
pressible flow arc simplified by the conical nature ,,)I 

the sharp cone flow field and numencally integrated OII 
a digital computer utilizing a marchiug implicit finttc- 
difference technique. Three-ditnens~ollal t~lrhtllcnc~ i> 
accounted for using a three-dimensior~;ti scalat- c&l> 
viscosity approach in conjunction with ;tn inner.-outci 
mixing-length formalism. The mviscid conical lli)\~ 
field about the sharp cone at incidence is determined 
usinga prior documented digital computer code lvhich 
in turn, furnishes the outer-edge conditions for inpui 
to the present boundary-layer analysis. To Ltsscss the 
accuracy and applicability of the present theory. COIIJ 
parisons of the calculated three-dimensional turbulcnr 
boundary-layer profiles (velocitiesand tcmpcraturel ;~rc’ 
made with detailed experimental flow-held surveys oi 
the three-dimensional turbulent boundary-layer- strut- 
tureat various circumferential locations ai-c~ullii 3 shar!; 
cone at incidence under supersonic How cond~t~on~ 
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2. ANALYTICAL ANALYSIS 

Governing three-d~~nsional turbulent boundary-layer 

The present analysis employs the thr~dimen~onal 
compressible turbulent bound~y-layer equations in 
terms of time-averaged mean flow quantities as derived 
by Vaglio-Laurin [lo]. The coordinate system is taken 
to consist of geodesics and geodesic parallels, following 
Moore [15]. For the sharp cone geometry under 
present consideration, the geodesic coordinates are 
taken to be the cone generators and the geodesic 
parallels are the circles swept by the meridional angle. 
The corresponding length function r(x) is the local 
radius of the body. See Fig. 1 for clarification of the 
sharp cone geometry, nomenclature, and coordinate 
system. The time-averaged mean velocity components 

FIG. 1. Sharp cone at angle of attack geometry and 
nomenclature. 

are taken to be ii, v and w in the directions of x, y and 4, 
respectively. The governing equations of motion are, 
following Vaglio-Laurin : 

Continuity 

Streamwise (x) momentum 

aii pw aii jT?(iiq ar pu?2+pv_+_____z 
aY r a# 

= _$7+$$+7] (2) 

Circumferential (f#) momentum 

a@ aw pwaw jiii~ar pr$-p7v-+--+~ax 
ay r a4 

Normal (y) momentum 

ap -_=O 

dY 

Energy (static enthalpy) 

(4) 

where 
I v++pv. 

P 
(6) 

Also implicit in the above equations is the requirement 
of an inviscid conical flow field which leads to the term 
@//ax = 0; a discussion of the inviscid conical flow 
field about a sharp cone at incidence in a supersonic 
or hypersonic flow will be given later in this section. 

If subscript w denotes wall and subscript e denotes 
outer edge of the boundary layer, the associated bound- 
ary conditions on the above defined equations are 

Momentum 

Energy 

u v -+ 0, u’w’ -+ 0, $0’ -+ 0 (7) 

y=O:P1=h,,v’h’=O 

lim y -+ co : h -+ h,, v’h’ + 0 
(8) 

which reflect the requirements of no slip and no 
homogeneous mass injection (suction or blowing) at 
the wall as well as a prescribed constant wall enthalpy. 

The normal momentum equation (4) reveals that the 
stat&pressure variation across the boundary layer is 
negligible, and hence the static pressure, p(4), is re- 
garded as an external input to the boundary-layer 
analysis from a separate inviscid analysis. The outer- 
edge velocities, U, and W,, as well as the outer-edge 
static enthalpy, h,, must be determined from the 
inviscid analysis consistent with the imposed static- 
pressure distribution, 

The gas model adopted for the present study is 
thermally and calorically perfect air having a constant 
specific heat ratio y = 1.40 and obeying the equation 
of state 

fj=pRT (9) 
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where R = 1716ft2,/sz.R. Hence, under this assump- 
tion. 

Ir = C‘,r (101 

where G is a scalar velocity function delincd hq 

where C’, = 6006ft2.‘sZ”R. The laminar viscosity. /L is 
taken to obey Sutherland’s law 

P ‘;’ 
(I 1) 

L’ref 

where T must have units of -R and subscript ref denotes 

a reference condition. The laminar Prandtl number, Pr, 
is taken to be a constant value of 0.71 across the 

entire boundary layer. 

Before equations (1) (3) and (5) can be solved, ex- 
pressions must be supplied for the Reynolds stress or 
turbulent shear terms in the momentum equations and 

the turbulent flux of static enthalpy in the energy 
equation. The approach used in the present analysis 
is to model these terms as functions of the mean-flow 

variables following the analysis by Hunt, Bushnell and 
Beckwith [14]. 

The theory that the Reynolds stress in turbulent flow 

is proportional to a momentum exchange coefficient 

times the mean-flow velocity gradient normal to the 
surface is well known and commonly used in turbulent 

boundary-layer analyses. This concept is based on an 
assumed analogy between the so-called eddy viscosity 
and the molecular viscosity. The total shear com- 

ponents in the streamwise (x) and circumferential ((/I) 
directions are written as 

where the eddy viscosities c, and Ed> in the X- and 

&directions, respectively, might in general be different. 
Since the total resultant shear must be a vector 

quantity, its magnitude is written as 

5 = [(Q + (Q)2]1!2 

Applying the well-known Prandtl mixing-length hy- 
pothesis (see [I] for clarification) in conjunction with 

the assumption that the eddy viscosity is a s&m 
function independent of coordinate direction (which 
means physically that the turbulent shear stress acts in 
the mean rate of strain direction) results in an eddy 
viscosity relationship of the form 

The quantity L is termed the mixing length and is some 
characteristic length related to the size or scales of 

eddies responsible for the flux of momentum in the 
y-direction. Under the above model the magnitude ot 
the turbulent shear stress in a three-dimensional tur- 

bulent boundary layer may be written in the form 

Hunt, Bushnell and Beckwith [14] call the above 
representation of the Reynolds stress the invariant 
turbulence model. In a recent analpsia of thl-ee- 

dimensional incompressibIe turbulent boundary-layer 
flows using the kinetic-energy-of-turbulence approach. 
Nash [3] hr d as a vanced arguments that the turbulent 
shear stress is likely to act in the mean rate of strain 

direction. defined by the components of the mean 
velocity gradient vector, so that his closure equation is 

simply. in the nomenclature of the present analysis. 

‘W,* *torb,i.i 

?U = ;\r 1 IXI 

( j’ I- i 

The same equation results from the scalar eddy vi>- 
cosity model presented by equation (15) above. On 
the other hand. BradshaN- [2] has derived a ser oi 
differential equations for the two components of the 
turbulent shear stress based on the kinetic-energq-of- 
turbulenceapproach but permitting the turbulent shear 

stress vector to deviate from the mean rate of strain 
direction. However, in the near-wall region, Bradshau’s 
turbulent shear stress equation reduces to the identical 
results derived above for the turbulent shear contribu- 
tions. Arguments for the preference of either variance 

or invariance of the turbulent shear stress vector 
relative to the mean rate of strain direction Lyric 

currently based on slender evidence. 
The expression for the total heat flux III a turbulcnl 

boundary layer may be written in terms of the static 
enthalpy as 

where kis the laminar (molecular) thermal conductivity 
and K is the so-called eddy thermal conductivity. Using 
the definition of the laminar (molecular) Prandtl 
number 
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and defining, by analogy, a turbulent Prandtl number 
(based on the use of static enthalpy) as 

Pr, = c,E (21) 
K 

with E the eddy viscosity discussed previously, the total 
heat flux expression (19) may be written in the form 

(22) 

In the manner of Escudier [16], Patankar and 
Spalding [ 171 recommend the following two-layer 
(inner-outer) variation of the mixing length, 1, across 
the turbulent two-dimensional boundary layer which 
is adopted for the present three-dimensional case by 
noting that the scalar properties of a turbulence field 
are unlikely to be affected by moderate three-dimen- 
sionality because turbulence is inherently three-dimen- 
sional in nature for even so-called two-dimensional 
flows 

Inner Region: 1, = k,y, for 0 < p 6 LyJk, 

Outer Region: I, = i,y,, for ly& < I’ 
(23) 

where the values for the various numerical constants 
are taken to be k, = 0.435 and A = @09. The value of y 
at the point where the velocity in the boundary layer 
is equal to 0.99 of the velocity at the boundary-layer 
outer edge is used to define the distance yl ; i.e. 

y-value where gg$$F = 0.99). (24) 
e e 

The now classic analysis by van Driest [18] con- 
cluded that, in the vicinity of a wail, the turbulent 
contribution to the total shear stress in an incom- 
pressible two-~men~onal boundary layer should be 
exponentially damped as the wall is approached so as 
to yield exactly the laminar shear stress form, 
z = ~(&/8y), at the wall. Following the suggestion by 
Patankar and Spalding [17] that, for compressible 
boundary-layer flows, the local value of shear stress 
be used in the van Driest exponential damping yields 
the following relationship for the magnitude of the 
three-dimensional near-wall total shear stress 

where the constant A, is taken to be 260 following 
the original van Driest proposal. Note that the damping 
term in equation (25) reflects the application of the 
local total shear stress as defined by equation (14). 

Hence, the present analysis treats the turbuI~t shear 
stress in a ark-dimensional turbulent boundary layer 
in terms of a two-layer inner-outer scalar eddy viscosity 
model. Based on equations (15). (23) and (2.5) the eddy 
viscosity expression for the inner region (0 < y < LyJk+) 
is 

ei = pkiy’[l -exp(*ly$ (26) 

and for the outer region (y > iy,/k,) 

x 

with the constant k,, A,, 2; and y, defined previously. 
The constraint used to define the end of the inner region 
and the beginning of the outer region is the continuity 
of the eddy viscosity. From the wall outward, the 
expression for the inner eddy viscosity applies until 
si = Ed, from which point the outer eddy viscosity is 
used. 

The turbulent Prandtl number (based on the static 
enthalpy definition of the turbulent heat flux) as given 
by equation (21) is physically a measure of the ratio 
of the turbulent transport of momentum to the tur- 
bulent transport of heat. For the present work, the 
turbulent Prandtl number defined by equation (21) is 
taken to remain constant at the value 0.90 across the 
entire boundary layer as recommended by Patankar 
and Spalding [17] for two-dimensional turbulent 
boundary layers. 

Procedwefbr numerical solution of’the three-dimensional 
boundary-layer equations 

For application in the present sharp cone at incidence 
investigation, the three-dimensional conical flow lami- 
nar boundary-layer analysisas presentedin Appendix B 
of the report by McGowan and Davis [I93 has been 
modified to include the effects of three-dimensional 
turbulence through the use of the scalar eddy viscosity 
model discussed previously. The basic McGowan and 
Davis laminar boundary-layer treatment is very similar 
to that of Dwyer [20] and Boericke [21] in that the 
limiting forms of the full three-dimensional compress- 
ible laminar boundary-layer equations for conical flow 
as originally derived by Moore [15] are solved using 
a marching implicit finite-difference technique for 
numerical integration of the nonlinear parabolic partial 
differential equations written in similarity variable 
form. 

Following Appendix B of McGowan and Davis [19], 
the governing three-dimensional turbulent boundary- 
layer equations (l-5) are transformed using similarity 
variables 5, q and < similar to those used by Dwyer 
[20] and Boericke [21] for three-dimensional laminar 



boundary layers. The definitions of 5. tl and < arc as 
follows: 

< = j’;1 rz ds = j’;,(_u sin (i, )‘d\- = :_Y’ sin’ti. 12X) 

:/I, L’, . p ’ 1 
,y’!- .i:,,, ,/‘; rdl, i7OI 

$ X/l, I 

( = C/l j 30) 

where I‘ = Y sin 0, for the sharp cone geomctr! OI 
present intcrcst. as shown in Fig. I. Introducing the 
above similarity variables into the governing equationx 

(liPiS) and performing the standard transformation 01 

variables manipulations yields the set of cquatlons 
(B.13)-(B.16) in Appendix B of McGowan and Davis 
with the following two modifications: 

I. The laminar viscosity. 1’. must bc replaced b! the 
sum of the laminar and turbulent (eddy) viscosity 

(p+::) in the transformed <- and i- momen(um 

equations, as well as in the transformed encrpq 
equation. Furthermore. in the energy equation the 

laminar heat conductivity term (p/Pi) must be replaced 

by the sum of the laminar and turbulent (eddy) heat 
conductivity [&PI) + (LPr, I]. 

2. The three-dimensional turbulent boundary-layc1 

flow must be locally similar in the sense of a mathemat- 
ical analysis under the constraint (i ?<) = 0 with the 
eddy viscosity i: evaluated at the loctrl i: condition. The 

applicability of this technique relies essentially on the 
condition that the external and body flow properties 

vary sufficiently slowly with the .x-dependent variable < 

defined by equation (28). Experimental justification foi 
the use of Ihis assumption in the case of thrse- 
dimensional turbulent boundary-layer Ro\+ over ;L 

sharp cone at incidence in a supersonic stream is 
presented in Section 4 of the present paper. 

Under the above local similarity restriction Ihe 

transformed governing boundary-layer equations be- 

come mathematically parabolic in the ‘1. < coordinates 
with < as a parameter. The “history” of the ilo~ is 

contained on/~ in the I: and 11 dependence on < and, 
hence, local similarity represents a “patching together” 
of local solutions. 

The method for numerical solution of the governing 
three-dimensional boundary-layer equations in simi- 
larity <, r,. c variables follows the iterative implicit 
linite-difference integration technique (integration in 
rl-direction marching in c-direction windward to lee- 
ward ray) presented in Chapter III of the report by 
McGowan and Davis [19]. A variable ,I grid mesh is 
used to concentrate grid points in the near-wall region 
where the dependent variables change most rapidly in 
a turbulent flow. Digital computer run times are accept- 
able for practical usage (approximately 20 min. includ- 
ing printout, to integrate 180~0 degrees around a sharp 
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Reynolds number conditions. Reference [24] presents 
experimentally determined surface pressure distribu- 
tions, surface flow angles, and detailed turbulent 
boundary-layer profile traverses at various circum- 
ferential locations around the cone. 

center-of-pressure position at O-682 L that is in excellent 
agreement with the theoretical conical flow value of 
(2~3)LJ~os~~. 

For the present investigation, attention is restricted 
solely to the free-stream Mach number 180 and angle- 
of-incidence 15.78deg condition of Rainbird [24]. The 
nominal free-stream conditions for this case are as 
follows (see Fig. 1 for the sharp cone geometry and 
nomenclature): 

M, = 180 

p, = 62640 Ibf/ft2 

(b) Integration of ~rcu~erential pressure distribu- 
tions to give local normal-force coefficients shows good 
agreement with overall balance measurements. 

(c) Measurements of surface pressure distributions 
along generators of the cone show pressures constant 
except for some extreme angle-of-attack conditions 
where a forward-propagating base effect is present. 

T, = 32160”R 

Re,,, = 2% x 10’ 

L = 4158 in. 

(d) Flow visualization using the oil-dot technique 
gives values of surface flow angle w,, i.e. the direction 
of surface shear stress, as well as primary separation 
position which are independent of distance from the 
cone apex, x/L, within a measuring accuracy of about 
15 deg. 

Due to the impulse nature of the blowdown tunnel 
flow, the cone surface temperature is taken as equal to 
the free-stream stagnation temperature (530”R) which 
results in a relatively small surface heat transfer rate 
from the cone to the boundary layer. Because of the 
conical nature of the flow field for a sharp cone at 
incidence (discussed in detail in Section 4 of this paper), 
all boundary-layer surveys at various circumferential 
locations around the cone were conducted at one axial 
location along the cone, namely, x/L = 085. As stated 
by Rainbird, boundary-layer tr~sition takes place 
quite close to the sharp cone apex (x,/L c O-1 because 
of the high stream turbulence level resulting from noise 
generated by the blowdown wind tunnel control valve. 

Because of the importance of the invariance of the 
surface flow angle with lengthwise location at a given 
circumferential location in the present theoretical 
analysis, a comparison is given in Fig. 2 (taken from 
[24]) of surface flow angle measurements at various x/L 
stations up to separation for the rather severe condition 
of N/C?, = 2. See Fig. 1 for the definition of the surface 
flow angle relative to the conical geometry of present 
interest. The results show that surface flow angle is 
essentially independent of distance from the cone apex, 
which means that under such a flow condition (conical 
inviscid and fully turbulent boundary layer) a locally 
similar turbulent boundary-layer analysis which 
neglects “upstream history” may be a plausible as- 
sumption. 

4. RESULTS AND DISCUSSION 

Just$cation of locully similar turbulent boundary-layer 
analysis 

The assumption madein Section 2 of a locally similar 
boundary-layer analysis with the eddy viscosity E 
evaluated at the locni < condition appears very 
questionable for application to general three-dimen- 
sional turbulent flows because of the failure to include 
details of the “upstream history”. However, for the 
special case of a sharp cone at incidence in a supersonic 
stream where the boundary layer is in a state of fully 
developed turbulent flow, i.e. far downstream of tran- 
sition with a constant wall temperature, experimental 
measurements reported by Rainbird [24] establish that 
the Bow field, even with separation present, is essentially 
conical and symmetrical, thus permitting all detailed 
measurements to be made at one lengthwise station. 
The evidence in support of this finding is as follows 
(taken from [24]): 

A good discussion into the physical reason why a 
locally similar turbulent boundary layer analysis is 
applicable and accurate under the present flow situ- 
ation may be found in the recent book by Tennekes 
and Lumley [25]. Under conical inviscid and fully 
turbulent boundary-layer conditions in regions far 

tj” r 

(a) Overall force and moment measurements show 
zero side force and yawing moment and give a fixed 

FIG. 2. Ex~rimen~aJIy determined surface Aow angles at 
various lengthwise stations from Rainbird [24]. 
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removed from the sharp cone apex, the downstream 
changes in the flow field are simply so slow (as com- 

pared with the time scale of the turbulence) that the 
turbulence is in approximate equilibrium with respect 
to its local environment and hence “upstream history” 
is not important. 

Presrntution of presmt wsi4lt.s 

Turning now to representative results from the 
present investigation, one sees in Fig. 3 a comparison 
of the calculated surface pressure distribution around 
the sharp cone based on the Jones analysis [22.23] 
relative to the experimental measurements of Rainbird 
[24]. As is clearly shown in Fig. 3. the agreement is 

3.0 

2.5 

are the so-called isentropic surface vaiucs discussed m 
Section 2. 

With respect to the above. it should be noted that 
Rainbird [24] uxpcrimentally obscr\ctl turbulent 
boundary-laqcr separation to occur at approximately 
IS9 dcg around the cone fol- the present Ilou condi- 
tion and angle of incidence (,21, : 1.X0. Rc, .j, = 
2.56 * IO-. I/ z- 15.7X deg). As discusszd by Rainbird in 
[ 241. the development of Rov, separation about shalp 
cones ;15 rhc incidence angle is incl-cased is a gradual. 

progressive. \tc.tdq. and cssentiall> cr>nical process in- 

volving thu formation of symmetrical lobe\ of \~~~rtical 
lluid which develop into vortices ,md which renxnl~ 

comparatiwl~ CIOXC to the C‘OIIC SUI l'acz on Athur side 

0.5 

:- I nviscid sharp ccme at angle of attack 

following Jones [Z, 231 

0 I, 

0 20 40 60 80 ICC 120 140 160 180 

0, deg 

b-1(,. 3 Surface pressure distribution under supersonic condition< 

excellent over the entire cone. Figure 4 presents the 
corresponding calculated inviscid flow parameters 
(streamwise and crossflow velocities. as well as static 
temperature) on the cone surface. These surface values 

1.4 

[ 

0.6 - 

0.4 - 

0, deg 

FIG. 4. Calculated inviscid flow parameters on cone surface 
under supersonic conditions. 

of; and near. the leeward gencratoi. tar the anplc 01 
incidence of present interest 17 = 15.7X deg) Rainbird 

observed the formation of two symmc~rically disposed 
lobes of vertical fluid on either side of the leeward 
generator. At a higher angle of incidence (E = 22.75 degl 
these lobes of vertical Huid roll up to form a pair or 
symmetrically disposed vortices close to the wont’ 
surface which. in turn. result in the formation of 
internal shock waves with their attendant local in- 
creases in pressure. Since there are no \orticcs present 
in the separated flow Geld of current interest. the in- 
fluencc of separation on the external mviscid flow is 
small, which is reflected in the excellent agreement 
shown in Fig. 3 between inviscid theory and experiment. 

Figure 5 presents the calculated mean velocity and 
static temperature profiles across the turbulent bound- 
ary layer at the location Y I, = @X5 on the most 
windward ray (rb = 0 deg) of the sharp cone. The cal- 
culated profiles arc generally in cxcellcnt agreement 
with the measured profiles by Rainbird, which reveal? 
the validity of the presently proposed three-dimen- 
Gonal eddy viscosity mode1 for windward ray applica- 
tions. Also shown in Fig. 5 are comparisons of the 
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FIG. 5. Windward ray turbulent boundary-layer profiles under supersonic conditions. 

present windward ray profiles relative to calculated 
results based upon the recent windward plane of sym- 
metry turbulent boundary-layer analysis by Adams 
[26]. The basic approach of [26] involved formulation 
and application of a laminar, transitional, and turbulent 
boundary-layer analysis for the windward streamline 
of a sharp cone at incidence in a supersonic or 
hypersonic flow. The governing nonsimilar boundary- 
layer equations in the windward plane of symmetry 
were numerically integrated on a digital computer 
using an implicit bite-~fference technique which 
marched along the windward ray starting at the apex 
of the cone with a laminar similar solution. The same 
two-layer (inner-outer) eddy ~scosity-axing length 
model of turbulence was used for calculation of the 
windward ray turbulent boundary layer as in the 
present work. The transition zone was treated through 
an eddy viscosity-intermittency factor approach. In- 
viscid edge conditions atong the windward ray were 
obtained from the same Jones digital computer code 
used in the present work. The excellent agreement 
shown in Fig. 5 between the nonsi~lar analysis of [26] 
and the present locally similar analysis offers further 
analytical justification for the applicability of the 
locally similar type analysis for sharp cone at incidence 
flows with a turbulent boundary layer. 

Using the implicit finite-difference integration tech- 
nique to obtain the solution around the cone at the 

body location x/L = 045 yields the calculated profiles 
shown in Figs. 6(a)-(c) for the angular locations 
4 = 450, and 900, and 135.0deg, respectively. As can 
be seen from these figures, agreement between the 
calculated profiles and the experimental profiles are in 
good agreement for the Q, = 45%deg case, differ some- 
what in the near-wail region for the 4 = 90Gdeg case, 
and differ somewhat in character across the entire 
profile of C$ = 135.0 deg. Figure 7 presents the stream- 
line direction within the boundary layer which shows 
good agreement between calculated and measured 
values for the d, = 4SO-deg case and progressive dis- 
agreement as the &angle is increased. This behavior 
can be partially traced to the use of the isentropic 
surface values of the inviscid flow quantities as the 
boundary-layer outer-edge conditions. As discussed by 
Rainbird in the concluding paragraph of his paper, it 
is perhaps more appropriate to use “near” surface 
conditions (rather than isentropic surface conditions) 
as the external Row for boundary-layer calculations. 
The strictly correct treatment for the boundary-layer 
outer edge conditions requires a three-dimensional 
streamline-swallowing technique such as recently re- 
ported by Mayne [27]. 

Distributions of the surface flow angle, ws, and the 
external flow angle, w,, relative to experimental 
measurements are presented in Fig. 8. The condition 
that w, = 0 on a conical surface is used as a criterion 
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FIG. 7. Streamline directions within the three-dimensional 
turbulent boundary layer under supersonic conditions. 

for boundary-layer separation following Rainbird. As 
can be seen from Fig. 8, the present three-dimensional 
turbulent boundary-layer analysis predicts separation 

to occur somewhere between 4 = 1625 and 165.0deg, 
whereas Rainbird experimentally observed separation 
at 4 z 159 deg. Further note that the magnitude of the 

crossflow influence on the turbulent boundary-layer 
turning is very small, e.g. w, - w, z 7 deg at 4 = 900 

deg. Also shown in Fig. 8 is the calculated surface 

flow angle distribution for a laminar boundary layer 
under the same flow conditions. Much larger crossflow 
influence on the laminar boundary-layer turning is 

observed, i.e. w, - o, zz 26 deg at 4 = 90.0 deg. Laminar 

boundary-layer separation is predicted to occur much 
earlier than for the turbulent case, somewhere between 
4 = 13OQ and 132.5 deg. No attempt has been made in 

the present study to attempt more accurate location 
of the calculated separation location by use of a very 
small 4 integration increment near separation; all of 
the present calculations employed a constant 4 in- 

60 r 
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0. deg 

FIG. 8. Surface and external flow directions under super- 
sonic conditions. 

tegration increment of 2.50deg. In addition, accurate 

numerical calculation of the separation location re- 

quires treatment of viscous-inviscid interaction effects, 

a difficult problem not considered in the present work. 

The calculated scalar eddy viscosity, E, distributions 

across the three-dimensional turbulent boundary layer 
at various angular locations around the cone are 

presented in Fig. 9. As is apparent the eddy viscosity 
reaches its maximum value in the outer region of the 
boundary layer with E >> ,u even in regions near the 

wall; e.g. E zz 10~ at y z 00025 in. Further observe that 

the maximum value of the eddy viscosity increases 

with an increase in the 4 angle; e.g. smax z 200~ at 

4 = 45.0 deg and E,,, z 350~ at 4 = 135,Odeg. It 

should be noted that the laminar viscosity, p. in the 
above is evaluated at the same local conditions as the 

corresponding eddy viscosity. 

1 10 100 

E 

u 

FIG. 9. Eddy viscosity distributions at various angular 
locations under supersonic conditions. 

5. CONCLUDING SUMMARY 

The above-presented results of the current investi- 

gation indicate that numerical calculation of the three- 
dimensional compressible turbulent boundary layer on 
a sharp cone at incidence in a supersonic stream is 
indeed feasible and reasonable, based on comparisons 
with experimental measurements. The assumption of a 
locally similar turbulent boundary-layer analysis 
neglecting “upstream history” appears to result in 
acceptable predictions of the mean flow profiles, in- 
cluding crossflow, when used in conjunction with a 
three-dimensional invariant turbulence scalar eddy 
viscosity model. The degree of success experienced in 



59’ J. (. AIMMS 

the present investigation indicates that the scalar eddy I? 
viscosity approach should be applicable to numerical 
calculation of general three-dimensional compressible 
turbulent boundary-layer flows which do not separalc. 

11 

Application of the present method to three-dimensional 

turbulent boundary-layer flows on yawed sharp cones 
at hypersonic speeds including heat transfer cft‘ects 15 

may be found in the recent report by Adams [28-J 
I 6 
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(‘OUCHE LIMITE TURBULENTt 
ET COMPRESSIBLE SUR UN CONF EFFILE EN INCIDFN<‘I- 

D4NS IJN F(‘OI!LFMENT CllPERSONI(~l:F 

R&urn& On prCscnle le calcul numerique dc la couchc limltc turhuicnte Ed trlclimc~isloi~n~lic SKI un 
c?me effilC, cn incidence dans un Ccoulemcnt supersonique. lx mod?le th&rique c\t has? \ur I’intCet-ation, 
par la methode des dil%renccs finies. des Cquationx de Ia couchc hmite turbulcnte. iIn utlliw un 
modele de turbulence tridimcnsionnelle qui introduit unc \iscositC turbulcntc xalaire. Unc comparaison 
de cette tht-orie avec des mesures sur In structure tridimcnsionnellc de la couchc Itmite tprolll~ dc \ ~teslc 
et de temp&ture) et sur la direction des lignes de couran1 lohtcnue par une technique it‘i:coulement 

d’hurle), r&vile un bon xrcortl 
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Zm~mmenfassu~-~ wird eine analytische Methode der nume~sch~n Berechnung einer dreidimen- 
sionalen turbule~ten Gen~cbicht an einem scharfen E~nlau~e~el unter su~rsonischen Str~mungs- 
bedingun~en angegeben. Das theoretische Model1 beruht auf einer impliziten In#egration endlicher 
Differenzen der maBgebenden Gieichungen fur die dreid~m~nsion~le turbulente Cre117schicht in Ver- 
bindung mit einem dreidjmensionalen skalaren ScheinreibungsmodelI fir Turbulenz. Der Vergfeich der 
angegebenen Theorie mit aus~~hrlichen Messungen der dreidiInensional~n turbulenten Grenzschicht- 
struktur (Geschwindigkeits-und Temperaturprofile) sowie der Richtung der Stromlinien an der Oberffache 

(gewonnen durch Anwendung einer Oelstromtechnik) zeigt gute ijbereinstimmung. 

TPEXMEPHMB C~~MAEMbI~ TYR6Y~E~T~bi~ n~~PA~~~~b1~ CJIO8 
HA OCTPOM KOHYCE C Yl-JIOM ATAKM B CB~PX3BY~O~OM IIOTUKE 

Amera--,I@rcs aH~~T~~e~K~~ ilo~xo&, c~o~si~~rics K W~CJ-WHHOM~ pacu&y T@xMepHoro 
Typ6y~eHT~OrO HOrpa~~~HOrO~O~ Ha OCTPOM KOHy~eCyr~~oMaTaKn B j’CSiOB&?K @epX3ByKOBOi-0 

Te'leHW% TeopeT~~ecKa~ MOLteSib OCHOBaH2k HiI He8BHOii KOHeq~~-pa3H~THO~ CXeMe qUCneHHOr0 
~~TerpHpoBaHn~ ~~~~eHHblx ypaBHeHn~ T~xMep~oro Typ6yneHTHoro norpaH~yHor0 cn01i npn 
~PffH~THH T~XMepHO~ CKiUlRpKOit MOllenH Ty~y~eHTH~T~ JiJUl BHXf?eBOii BSI3KOCTN. 06Hapy~eHO 
xopouree cooTBeTci-we Memay tiacrofliqeli Teopiteil n ~o~po6Hb~MH 3Kc~epnMeHr~ffbHbi~~ fiats- 
HbiMsf 0 cTpyr;fype Tpexnaepfzoro qq6ynemfioro norpswsioro cnoIi (npot#wiH cropoc~~ M 
'EMTI~fIRWy~bI), a TaKxe 0 Kap'iMHt: ~05epXH~THbix JHii%fii TOKa, IlOIIyWHlibiX C HOMOlUb~ MeTOE 

MaCRRHbiX IIn~HOK. 
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