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Abstract—An analytical approach toward numerical calculation of the three-dimensional turbulent

boundary layer on a sharp cone at incidence under supersonic flow conditions is presented. The

theoretical model is based on implicit finite-difference integration of the governing three-dimensional

turbulent boundary-layer equations in conjunction with a three-dimensional scalar eddy viscosity model

of turbulence. Comparison of the present theory with detailed experimental measurements of the three-

dimensional turbulent boundary-layer structure (velocity and temperature profiles), as well as surface
streamline direction (obtained via an oil-flow technique), reveals good agreement.

NOMENCLATURE

van Driest damping constant, 260,
constant pressure specific heat for air,
6006 f12/52°R;

scalar velocity function;

fluctuating static enthalpy;

mean static enthalpy;

laminar (molecular) thermal conductivity;
inner law mixing length constant, 0-435;
slant length of sharp cone;

mixing length;

free-stream Mach number;

laminar Prandtl number for air, 0-71;
turbulent Prandtl number, 090;

static pressure;

free-stream static pressure;

heat flux;

specific gas constant for air, 1716 ft2/s*°R;
free-stream Reynolds number, p U L/u. ;
body radius;

mean static temperature;

static temperature at outer edge of boundary
layer;

stagnation temperature;

reference temperature;

wall temperature;

free-stream static temperature;

streamwise velocity component at outer edge
of boundary layer;

free-stream velocity;

fluctuating streamwise velocily component;
mean streamwise velocity component;

combined normal velocity components accord-
ing to equation {6};

fluctuating normal velocity component;

mean normal velocity component;

crossflow velocity component at outer edge of
boundary layer;

fluctuating crossflow velocity component;
mean crossflow velocity component;
coordinate along body surface;

coordinate normal to body surface;
characteristic thickness of boundary layer in
equation (24).

Greek letters

H
Heos
&L,

e,

angle of attack;

specific heat ratio for air, 1-40;

sharp cone semivertex angle;

eddy viscosity;

eddy viscosity in inner region;

eddy viscosity in outer region;

eddy thermal conductivity;

outer law mixing-length constant, 0090
laminar (molecular) viscosity;
free-stream laminar (molecular) viscosity;
transformed coordinates defined by equations
(28)-(30);

flyctuating mass density;

mean mass density;

free-stream mass density;

shear stress;

wall shear stress;

circumferential coordinate;



, streamline direction, tan ™ ! (W/if);

w,, streamline direction at outer edge of boundary
layer, tan™ '(W,/U.,});

- streamline direction at body surface,
tan” Mz, /7, )

2]

Subscripts

e, outer edge of boundary layer;
max, maximum value;

0, stagnation or total;
ref, reference value:

s, surface;

turb, turbulent;

W, wall;

X, x-direction;

&, ¢-direction;

o0, free-stream.
Superscripts

'

fluctuating quantity;
-, averaged quantity with respect to time.

1. INTRODUCTION

DEvELOPMENT of analysis techniques for the three-
dimensional turbulent boundary layer must face the
problem of how to accurately model the three-
dimensional turbulent shear stress in a time-averaged
Reynolds sense. The classical eddy viscosity-mixing
length hypothesis by Prandt] applied to three-dimen-
sional turbulent flows [1] suggests that the eddy
viscosity should depend only on the properties of the
turbulence and a local eddy scale, i.e. the eddy viscosity
should be a scalar function independent of coordinate
direction. Implicit in this approach is the requirement
that the directions of the three-dimensional turbulent
shear stress components are the same as the directions
of the corresponding mean velocity gradients. As shown
by Bradshaw [2] through a three-dimensional kinetic-
energy-of-turbulence approach, the directions of the
shear stress components are not, in general, exactly
the same as the directions of the corresponding mean
velocity components.

Recent analysis by Nash [3], Cooper [4], and Pierce
and Klinksiek [5] concerning three-dimensional tur-
bulent boundary layers in an incompressible flow
indicate that use of the scalar eddy viscosity concept
will lead to acceptable results when coupled to an
accurate integration technique for numerical solution
of the three-dimensional turbulent boundary-layer
equations. Both Cooper and Pierce and Klinksiek
applied implicit finite-difference approaches while
Nash used an explicit finite-difference scheme which
has recently been updated and improved [6] The
method of Nash has also been modified to include
the effects of centrifugal and Coriolis forces for appli-
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cation to calculation of the incompressible three-
dimensional turbulent boundary layer on a helicopter
rotor as reported in {7]. An excellent summary of the
state-of-the-art concerning three-dimensional turbu-
lent boundary-layer analysis of incompressible fluid
flow may be found in the recent book by Nash and
Patel [8].

With regard to the three-dimensional compressibic
turbulent boundary-layer problem. little work has been
done to present. The three-dimensional compressible
turbulent boundary-layer equations have been derived
by Braun [9] and Vaglio-Laurin [10]. Several attempts
to solve these equations using integral techniques in
conjunction with the so-called small crossflow assump-
tion (which uncouples the streamwise momentum
equation from the crossflow momentum equation) have
been made by Cooke [11]. Smith [12], and Bradley
[13], as well as Braun and Vaglio-Laurin. cited pre-
viously. These integral approaches arc not entircly
satisfactory because of the difficultics in adequatcly
representing the crossflow velocity profile. The analysis
by Hunt, Bushnell and Beckwith {14} s the first 1o
the author’s knowledge., to apply marching finite-
difference integration to the three-dimensionul com-
pressible turbulent boundary-layer cquations: this
work considers hypersonic flow over a swept infinite
cylinder-slab based on a scalar eddy viscosity model
of three-dimensional turbulence.

The present paper reports on an analytical investi-
gation and development of a finite-difference calcu-
lation technique for the analysis of the three-dimen-
sional compressible turbulent boundary layer on a
sharp cone at angle of attack in a supersonic flow. The
sharp cone geometry at angle of attack is of abvious
importance to aecrodynamic and propulsion engine
applications. Specifically, the governing three-dimen-
sional turbulent boundary-layer equations for a com-
pressible flow are simplified by the conical nature of
the sharp cone flow field and numerically integrated on
a digital computer utilizing a marching implicit fintte-
difference technique. Three-dimensional turbulence
accounted for using a three-dimensional scalar ¢ddy
viscosity approach in conjunction with an inner-outer
mixing-length formalism. The inviscid conical fow
field about the sharp cone at incidence is determined
using a prior documented digital computer code which,
in turn, furnishes the outer-edge conditions for input
to the present boundary-layer analysis. To assess the
accuracy and applicability of the present theory. com-
parisons of the calculated three-dimensional turbulent
boundary-layer profiles (velocities and temperature) arc
made with detailed experimental flow-ficld surveys of
the three-dimensional turbulent boundary-layer struc-
ture at various circumferential locations around a sharp
cone at incidence under supersonic flow conditions.
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2. ANALYTICAL ANALYSIS

Governing three-dimensional turbulent boundary-layer
equations

The present analysis employs the three-dimensional
compressible turbulent boundary-layer equations in
terms of time-averaged mean flow quantities as derived
by Vaglio-Laurin [10]. The coordinate system is taken
to consist of geodesics and geodesic parallels, following
Moore [15] For the sharp cone geometry under
present consideration, the geodesic coordinates are
taken to be the cone generators and the geodesic
parallels are the circles swept by the meridional angle.
The corresponding length function r(x) is the local
radius of the body. See Fig. 1 for clarification of the
sharp cone geometry, nomenclature, and coordinate
system. The time-averaged mean velocity components

mline

F1G. 1. Sharp cone at angle of attack geometry and
nomenclature.

are taken to be i, 7 and win the directions of x, y and ¢,
respectively. The governing equations of motion are,
following Vaglio-Laurin:
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Also implicit in the above equations is the requirement
of an inviscid conical flow field which leads to the term
0p/0x = 0; a discussion of the inviscid conical flow
field about a sharp cone at incidence in a supersonic
or hypersonic flow will be given later in this section.

If subscript w denotes wall and subscript e denotes
outer edge of the boundary layer, the associated bound-
ary conditions on the above defined equations are

Momentum

imy—sw:i-U,wo W,
o -0, 0w =0, v -0 0]
Energy
y=0:h="h, k=0

(8)
limy~—cc:h-h, vh—0

which reflect the requirements of no slip and no
homogeneous mass injection (suction or blowing) at
the wall as well as a prescribed constant wall enthalpy.
The normal momentum equation (4) reveals that the
static-pressure variation across the boundary layer is
negligible, and hence the static pressure, p(¢), is re-
garded as an external input to the boundary-layer
analysis from a separate inviscid analysis. The outer-
edge velocities, U, and W,, as well as the outer-edge
static enthalpy, h,, must be determined from the
inviscid analysis consistent with the imposed static-
pressure distribution.

The gas model adopted for the present study is
thermally and calorically perfect air having a constant
specific heat ratio y = 140 and obeying the equation
of state

p=pRT )
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where R = 1716{t?/s*°R. Hence, under this assump-
tion. - 7

= C,T (10}
where C, = 6006 ft*/s*"R. The laminar viscosity. (. is
taken to obey Sutherland’s law

po ";d+1986( T )

Heeg

T+1986

where T must have units of °R and subscript ref denotes
areference condition. The laminar Prandtl number, Pr.
1s taken to be a constant value of 0-71 across the
entire boundary layer.

(I

Turbulent transport laws

Before equations (1) -(3) and (5) can be solved, ex-
pressions must be supplied for the Reynolds stress or
turbulent shear terms in the momentum equations and
the turbulent flux of static enthalpy in the energy
equation. The approach used in the present analysis
is to model these terms as functions of the mean-flow
variables following the analysis by Hunt, Bushnell and
Beckwith [14].

The theory that the Reynolds stress in turbulent flow
is proportional to a momentum exchange coefficient
times the mean-flow velocity gradient normal to the
surface is well known and commonly used in turbulent
boundary-layer analyses. This concept is based on an
assumed analogy between the so-called eddy viscosity
and the molecular viscosity. The total shear com-
ponents in the streamwise (x) and circumferential ()
directions are written as

(12)

ci cu 171'1
T, = ;_~pu1’ = [L;

(13)
where the eddy viscosities ¢, and ¢, in the x- and
¢-directions, respectively, might in general be different.
Since the total resultant shear must be a vector
quantity, its magnitude is written as

o= [0+ (1,2

AN\ 2 ; 12
= [(Mexﬁ(ﬁ“) u+s¢)2<3‘1> ] a4
oy .

Applying the weli-known Prandtl mixing-length hy-
pothesis (see [ 1] for clarification) in conjunction with
the assumption that the eddy viscosity is a scalar
function independent of coordinate direction (which
means physically that the turbulent shear stress acts in
the mean rate of strain direction} results in an eddy
viscosity relationship of the form

o0
= pl? i
ay

(15)

E=8, =& =

where G is a scalar velocity function defined by

oG T f?ﬂ)l ( Fiey 2 !l
cy B ) ) ;
The quantity - is termed the mixing length and is some
characteristic length related to the size or scales of
eddies responsible for the flux of momentum in the
v-direction. Under the above model the magnitude of

the turbulent shear stress in a three-dimensional tur-
bulent boundary layer may be written in the form

Cary = P K(Jf\ ‘,‘i‘“)lji (a
urt
e ‘ \t Vo

Hunt, Bushnell and Beckwith [14] call the above
representation of the Reynolds stress the invariant
turbulence model. In a recent analysis of three-
dimensional incompressible turbulent boundary-layer
flows using the kinetic-energy-of-turbulence approach,
Nash [3] has advanced arguments that the turbulent
shear stress is likely to act in the mean rate of strain
direction. defined by the components of the mean
velocity gradiem vector, so that his closure equation is

P et -Ta T ) Soa

e Ul UIL plLbLIll Lﬂldlybl\

{16}

7
il

auupl_y’ in the nomenclatu

‘lurh,x . °(urb‘[,‘)

118)

Cu A

Cy oy
The same cquation results from the scalar eddy vis-
cosity model presented by cquation (15) above. On
the other hand. Bradshaw [2] has derived a set of
differential equations for the two components of the
turbulent shear stress based on the kinetic-energy-ol-
turbulence approach but permitting the turbulent shear
stress vector to deviate from the mean rate of strain
direction. However, in the near-wall region, Bradshaw’s
turbulent shear stress equation reduces to the identical
results derived above for the turbulent shear contribu-
tions. Arguments for the preference of either variance
or invariance of the turbulent shear stress vector
relative to the mean rate of strain direction are
currently based on slender evidence.

The expression for the total heat flux in a turbulent
boundary layer may be written in terms of the static
enthalpy as
— A — R &

o pr'h = C, oy t ¢ e {19)
where kis the laminar (molecular) thermal conductivity
and « is the so-called eddy thermal conductivity. Using
the definition of the laminar (molecular) Prandtl
number

{20y
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and defining, by analogy, a turbulent Prandtl number
(based on the use of static enthalpy) as

_ Cpe

Pr
ok

(1)

with ¢ the eddy viscosity discussed previously, the total
heat flux expression (19) may be written in the form

. 1+6 1]675
1= H pr uPr oy

Mixing-length model
In the manner of Escudier [16], Patankar and
Spalding [17] recommend the following two-layer

(22)

{inner—outer) variation of the mixing length, L, across

the turbulent two-dimensional boundary layer which
is adopted for the present three-dimensional case by
noting that the scalar properties of a turbulence field
are unlikely to be affected by moderate three-dimen-
sionality because turbulence is inherently three-dimen-
sional in nature for even so-called two-dimensional
flows

Inner Region: L =k.y, for 0 <y € iy/k )
Quter Region: L = 4y, for Ayp/k. <y -

where the values for the various numerical constants
are taken to be k. = 0435 and A = (-09. The value of y
at the point where the velocity in the boundary layer
is equal to 0-99 of the velocity at the boundary-layer
outer edge is used to define the distance y;; i.e.

[(a)Z + (W)Z]I/Z

V= { y-value where = 0-99}, (24)

The now classic analysis by van Driest [18] con-
cluded that, in the vicinity of a wall, the turbulent
contribution to the total shear stress in an incom-
pressible two-dimensional boundary layer should be
exponentially damped as the wall is approached so as
to yield exactly the laminar shear stress form,
T = u(0u/dy), at the wall. Following the suggestion by
Patankar and Spalding [17] that, for compressibie
boundary-layer flows, the local value of shear stress
be used in the van Driest exponential damping yields
the following relationship for the magnitude of the
three-dimensional near-wall total shear stress

oG Cw fem\TI2 a0\?
r=n§y+ak3y2[1—exp<~-%fg)] (5;) 25)

where the constant A, is taken to be 260 following
the original van Driest proposal. Note that the damping
term in equation (25) reflects the application of the
local total shear stress as defined by equation (14).
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Hence, the present analysis treats the turbulent shear
stress in a three-dimensional turbulent boundary layer
in terms of a two-layer inner-outer scalar eddy viscosity
model. Based on equations {15), (23) and (25), the eddy
viscosity expression for the inner region (0 < y < dy,/k.)
18

— o\ I? 6G
&= pkfy{l —exp( 4 ﬁ’ﬂ T e
HA, oy
and for the outer region (y > Ay/k,)
oG
27

—na2 2
£g = PA Y —
o= PATY 2y

with the constant k,, 4,, 4 and y, defined previously.
The constraint used to define the end of the inner region
and the beginning of the outer region is the continuity
of the eddy viscosity. From the wall outward, the
expression for the inner eddy viscosity applies until
& = &, from which point the outer eddy viscosity is
used.

The turbulent Prandtl number (based on the static
enthalpy definition of the turbulent heat flux) as given
by equation (21) is physically a measure of the ratio
of the turbulent transport of momentum to the tur-
bulent transport of heat. For the present work, the
turbulent Prandtl number defined by equation (21) is
taken to remain constant at the value 0:90 across the
entire boundary layer as recommended by Patankar
and Spalding [17] for two-dimensional turbulent
boundary layers.

Procedure for numerical solution of the three-dimensional
boundary-layer equations

Forapplication in the present sharp cone at incidence
investigation, the three-dimensional conical flow lami-
nar boundary-layer analysis as presented in Appendix B
of the report by McGowan and Davis [19] has been
modified to include the effects of three-dimensional
turbulence through the use of the scalar eddy viscosity
model discussed previously. The basic McGowan and
Davis laminar boundary-layer treatment is very similar
to that of Dwyer [20] and Boericke [21] in that the
limiting forms of the full three-dimensional compress-
ible laminar boundary-layer equations for conical low
as originally derived by Moore [15] are solved using
a marching implicit finite-difference technique for
numerical integration of the nonlinear parabolic partial
differential equations written in similarity variable
form.

Following Appendix B of McGowan and Davis [19],
the governing three-dimensional turbulent boundary-
layer equations (1-5) are transformed using similarity
variables ¢, 7 and { similar to those used by Dwyer
[20] and Boericke [21] for three-dimensional laminar



86 J.CApams. Jr.

boundary layers. The definitions of &. 4 and { are as

follows:
&= fridy = 3lxsing, ) dx = Jxtsin®o,  (2R)
n= (294
where r = xsind,. for the sharp conc geometry of

present interest, as shown in Fig. 1. Introducing the
above similarity variables into the governing equations
(1)—(5) and performing the standard transformation of
variables manipulations yields the set of cquations
(B.13)—(B.16) in Appendix B of McGowan and Davis
with the following two modifications:

1. The laminar viscosity. j. must be replaced by the
sum of the laminar and turbulent (eddy) viscosity
(u+&) in the transformed & and - momentum
equations, as well as in the transformed energy
equation. Furthermore. in the energy equation the
laminar heat conductivity term (u/Pr) must be replaced
by the sum of the laminar and turbulent (eddy) heat
conductivity [(u/Pr)+(e/Pr))].

2. The three-dimensional turbulent boundary-layer
flow must be locally similar in the sense of a mathemat-
ical analysis under the constraint (¢/¢¢) =0 with the
eddy viscosity ¢ evaluated at the local ¢ condition. The
applicability of this technique relies essentially on the
condition that the external and body flow properties
vary sufficiently slowly with the x-dependent variable ¢
defined by equation (28). Experimental justification for
the use of this assumption in the case of three-
dimensional turbulent boundary-layer flow over a
sharp cone at incidence in a supersonic stream is
presented in Section 4 of the present paper.

Under the above local similanty restriction the
transformed governing boundary-layer equations be-
come mathematically parabolic in the 4, { coordinates
with ¢ as a parameter. The “history” of the flow is
contained only in the £ and y dependence on ¢ and,
hence, local similarity represents a “patching together”
of local solutions.

The method for numerical solution of the governing
three-dimensional boundary-layer equations in simi-
larity &, y. ¢ variables follows the iterative implicit
finite-difference integration technique (integration in
n-direction marching in J-direction windward to lee-
ward ray) presented in Chapter II1 of the report by
McGowan and Davis [19]. A variable » grid mesh is
used to concentrate grid points in the near-wall region
where the dependent variables change most rapidly in
a turbulent flow. Digital computer run times are accept-
able for practical usage (approximately 20 min. includ-
ing printout, to integrate 180-0 degrees around a sharp

cone at incidence using a 2:50-deg step size {-integra-
tion increment with 120 4 grid points across the bound-
ary Javer on a CDC 1604-B digital computer),

Three-dimensional inviscid conical floy

The necessary outer-edge conditions for input to the
above-described boundary-layer analysis are deter-
mined based on results from an invisad analysis of a
sharp cone at incidence under supersonic or hyper-
sonic conditions following Jones {22, Basically Jones'
method uses the condition of conicity o reduce the
problem to a set of clliptic nonlincar partial differential
equations in two independent variables. A transfornia-
tion of coordinates is used to (ix the boundaries. one
of which is the unknown shock wave. between which
the elliptic equations are to be satisfied. The method
1s, in many cases. only limited by the crossflow velocity
expanding from subsonic to supersonic conditions
which changes the mathematical character of the
governing equations from elliptic to hyperbolic. by the
entropy singularity moving too fur awuy from the
surface, or by the shock approaching very close to the
Mach wave. In practice these restrictions limit the
allowable angle-of-attack range to x o, % L (see Fig. |
for clarificution of nomenclaturel.

The procedure for specifying the mviscrd data neces-
sary for input to the McGowan and Davis boundary-
layver analysis is quite simple in that only the pressurc
distribution around the cone. along with the velocity
and density on the windward streamline. must be
specified. All other inviscid quantitics are then inter
nally caleulated using the inviscid  compressible
Bernoulli and crossflow momentum eguations applied
at the cone surface. along with the restriction that
the entropy remain constant on the surface. 1o the
cone surface is an isentropic surfuce. Complete details
of this procedure are given in Section B of Chapter 1V
in the report by McGowan and Davis {19},

It should be pointed out that Jones [23] has recently
published @ very complete and thorough set of tables
for inviscid supersonic and hypersonic flow about
circular cones at incldence in a perfect gas, o= [40,
stream. These tables can be used to provide all of the
needed inviscid information for input to the present
boundary-layer analysis.

3. PRIOR EXPERIMENTAL INVESTIGATIONS

The set of experimental data used for compurison
with the present theory is taken from the work of
Rainbird [24] concerning turbulent boundary-layer
growth and separation on a yawed 12-5-deg semivertex
angle sharp cone. The investigation was conducted in
the Canadian National Aeronautical Establishment
S-ftintermittent blowdown (air) supersonic wind tunnel
at moderate relative incidence (28, = | 2) under high
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Reynolds number conditions. Reference [24] presents
experimentally determined surface pressure distribu-
tions, surface flow angles, and detailed turbulent
boundary-layer profile traverses at various circum-
ferential locations around the cone.

For the present investigation, attention is restricted
solely to the free-stream Mach number 1-80 and angle-
of-incidence 15-78-deg condition of Rainbird [24]. The
nominal free-stream conditions for this case are as
follows (see Fig. 1 for the sharp cone geometry and
nomenclature):

M, =180
p.. = 62640 Ibi/it?
T, = 321-60°R
Re, , =256 x 107
L =41-58in.

Due to the impulse nature of the blowdown tunnel
flow, the cone surface temperature is taken as equal to
the free-stream stagnation temperature (530°R) which
results in a relatively small surface heat transfer rate
from the cone to the boundary layer. Because of the
conical nature of the flow field for a sharp cone at
incidence (discussed in detail in Section 4 of this paper),
all boundary-layer surveys at various circumferential
locations around the cone were conducted at one axial
location along the cone, namely, x/L = 0-85. As stated
by Rainbird, boundary-layer transition takes place
quite close to the sharp cone apex {x/L < 0-1 because
of the high stream turbulence level resulting from noise
generated by the blowdown wind tunnel control valve.

4. RESULTS AND DISCUSSION

Justification of locally similar turbulent boundary-layer
analysis

The assumption madein Section 2 of a locally similar
boundary-layer analysis with the eddy viscosity ¢
evaluated at the local ¢ condition appears very
questionable for application to general three-dimen-
sional turbulent flows because of the failure to include
details of the “upstream history”. However, for the
special case of a sharp cone atincidence in a supersonic
stream where the boundary layer is in a state of fully
developed turbulent flow, i.e. far downstream of tran-
sition with a constant wall temperature, experimental
measurements reported by Rainbird [24] establish that
the flow field, even with separation present, is essentially
conical and symmetrical, thus permitting all detailed
measurements to be made at one lengthwise station.
The evidence in support of this finding is as follows
(taken from [247):

{a) Overall force and moment measurements show
zero side force and yawing moment and give a fixed
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center-of-pressure position at 0-682 L thatis in excellent
agreement with the theoretical conical flow value of
(2/3)L/cosd,.

(b} Integration of circumferential pressure distribu-
tions to give local normal-force coefficients shows good
agreement with overall balance measurements.

(c} Measurements of surface pressure distributions
along generators of the cone show pressures constant
except for some extreme angle-of-attack conditions
where a forward-propagating base effect is present.

(d) Flow visualization using the oil-dot technique
gives values of surface flow angle w,, i.e. the direction
of surface shear stress, as well as primary separation
position which are independent of distance from the
cone apex, x/L, within a measuring accuracy of about
15 deg.

Because of the importance of the invariance of the
surface flow angle with lengthwise location at a given
circumferential location in the present theoretical
analysis, a comparison is given in Fig. 2 (taken from
[24]) of surface flow angle measurements at various x/L
stations up to separation for the rather severe condition
of a/d, = 2. See Fig. 1 for the definition of the surface
flow angle relative to the conical geometry of present
interest. The results show that surface flow angle is
essentially independent of distance from the cone apex,
which means that under such a flow condition {conical
inviscid and fully turbulent boundary layer} a locally
similar turbulent boundary-layer analysis which
neglects “upstream history” may be a plausible as-
sumption.

A good discussion into the physical reason why a
locally similar turbulent boundary layer analysis is
applicable and accurate under the present flow situ-
ation may be found in the recent book by Tennekes
and Lumley [25]. Under conical inviscid and fully
turbulent boundary-layer conditions in regions far
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Fic. 2. E:xperimenta]ly determined surface flow angles at
various lengthwise stations from Rainbird [24].
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removed from the sharp cone apex, the downstream
changes in the flow field are simply so slow (as com-
pared with the time scale of the turbulence) that the
turbulence is in approximate equilibrium with respect
to its local environment and hence “upstream history™
is not important.

Presentation of present results

Turning now to representative results from the
present investigation, one sees in Fig. 3 a comparison
of the calculated surface pressure distribution around
the sharp cone based on the Jones analysis [22,23]
relative to the experimental measurements of Rainbird
[24]. As is clearly shown in Fig. 3. the agreement is

30

25
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are the so-called isentropic surface values discussed in
Section 2.

With respect 1o the above. it should be noted that
Rainbird [24] experimentally observed turbulent
boundary-layer separation to occur at approximately
159 deg around the cone for the present flow condi-
tion and angle of incidence (M, = 180, Re, ; =
2:56 % 107, % = 1578 deg). As discussed by Rainbird in
[24]. the development of flow separation about sharp
cones as the incidence angle 1s increased is a gradual,
progressive. steady. and essentially conical process in-
volving the formation of symmetrical lobes of vortical
fluid which develop into vortices wnd which remain
comparatively close to the cone surface on cither side

1
Boundary- layer
separation [24)

15
ele,
-0
i Inviscid sharp cone at angle of attack
05 following Jones {22, 23)
0 L L |
0 20 40 60 80 100 120 140 160 180
8, deg

F16. 3. Surface pressure distribution under supersonic conditions.

excellent over the entire cone. Figure 4 presents the
corresponding calculated inviscid flow parameters
(streamwise and crossflow velocities, as well as static
temperature) on the cone surface. These surface values
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F1G. 4. Calculated inviscid flow parameters on cone surface
under supersonic conditions.

of, and near. the leeward gencrator. For the angle of
incidence of present interest (2 = 15-78 deg) Rainbird
observed the formation of two symmetrically disposed
lobes of vortical fluid on either side of the leeward
generator. Atahigher angle of incidence (¢ = 22-75 deg)
these lobes of vortical fluid roll up to form a pair of
symmetrically disposed vortices close to the cone
surface which, in turn. result in the formation of
internal shock waves with their attendant local in-
creases in pressure. Since there are no vortices present
in the separated flow field of current interest. the in-
fluence of separation on the external inviscid flow is
small, which 1s reflected in the excellent agreement
shownin Fig. 3 between inviscid theory and experiment.

Figure 5 presents the calculated mean velocity and
static temperature profiles across the turbulent bound-
ary layer at the location x/L =085 on the most
windward ray (¢p = 0deg) of the sharp cone. The cal-
culated profiles are generally in excellent agreement
with the measured profiles by Rainbird, which reveals
the validity of the presently proposed three-dimen-
sional eddy viscosity model for windward ray applica-
tions. Also shown in Fig. 5 are comparisons of the
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present windward ray profiles relative to calculated
results based upon the recent windward plane of sym-
metry turbulent boundary-layer analysis by Adams
[26]. The basic approach of [26] involved formulation
and application of a laminar, transitional, and turbulent
boundary-layer analysis for the windward streamline
of a sharp cone at incidence in a supersonic or
hypersonic flow. The governing nonsimilar boundary-
layer equations in the windward plane of symmetry
were numerically integrated on a digital computer
using an implicit finite-difference technique which
marched along the windward ray starting at the apex
of the cone with a laminar similar solution. The same
two-layer (inner—outer) eddy viscosity-mixing length
model of turbulence was used for calculation of the
windward ray turbulent boundary layer as in the
present work. The transition zone was treated through
an eddy viscosity-intermittency factor approach. In-
viscid edge conditions along the windward ray were
obtained from the same Jones digital computer code
used in the present work. The excellent agreement
shown in Fig. 5 between the nonsimilar analysis of [26]
and the present locally similar analysis offers further
analytical justification for the applicability of the
locally similar type analysis for sharp cone at incidence
flows with a turbulent boundary layer.

Using the implicit finite-difference integration tech-
nique to obtain the solution around the cone at the

body location x/L = 0-85 yields the calculated profiles
shown in Figs. 6(a)-{(c) for the angular locations
¢ = 4590, and 9040, and 1350 deg, respectively. As can
be seen from these figures, agreement between the
calculated profiles and the experimental profiles are in
good agreement for the ¢ = 45-0-deg case, differ some-
what in the near-wall region for the ¢ = 90-0-deg case,
and differ somewhat in character across the entire
profile of ¢ = 135-0deg. Figure 7 presents the stream-
line direction within the boundary layer which shows
good agreement between calculated and measured
values for the ¢ = 45-0-deg case and progressive dis-
agreement as the ¢-angle is increased. This behavior
can be partially traced to the use of the isentropic
surface values of the inviscid flow quantities as the
boundary-layer outer-edge conditions. As discussed by
Rainbird in the concluding paragraph of his paper, it
is perhaps more appropriate to use “near” surface
conditions (rather than isentropic surface conditions)
as the external flow for boundary-layer calculations.
The strictly correct treatment for the boundary-layer
outer edge conditions requires a three-dimensional
streamline-swallowing technique such as recently re-
ported by Mayne [27].

Distributions of the surface flow angle, w,, and the
external flow angle, w,, relative to experimental
measurements are presented in Fig. 8. The condition
that e, = 0 on a conical surface is used as a criterion
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turbulent boundary layer under supersonic conditions.

for boundary-layer separation following Rainbird. As
can be seen from Fig. §, the present three-dimensional
turbulent boundary-layer analysis predicts separation
to occur somewhere between ¢ = 162-5 and 1650 deg,
whereas Rainbird experimentally observed separation
at ¢ = 159 deg. Further note that the magnitude of the
crossflow influence on the turbulent boundary-layer
turning is very small, e.g. o, —w, ~ 7deg at ¢ = 900
deg. Also shown in Fig. 8 is the calculated surface
flow angle distribution for a laminar boundary layer
under the same flow conditions. Much larger crossflow
influence on the laminar boundary-layer turning is
observed,i.e. w,—w, = 26 degat ¢ = 90-0 deg. Laminar
boundary-layer separation is predicted to occur much
earlier than for the turbulent case, somewhere between
¢ = 1300 and 132-5 deg. No attempt has been made in
the present study to attempt more accurate location
of the calculated separation location by use of a very
small ¢ integration increment near separation; all of
the present calculations employed a constant ¢ in-

60!'

s0 |

#, deg

F1G. 8. Surface and external flow directions under super-
sonic conditions.
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tegration increment of 2-50 deg. In addition, accurate
numerical calculation of the separation location re-
quires treatment of viscous-inviscid interaction effects,
a difficult problem not considered in the present work.

The calculated scalar eddy viscosity, ¢, distributions
across the three-dimensional turbulent boundary layer
at various angular locations around the cone are
presented in Fig. 9. As is apparent the eddy viscosity
reaches its maximum value in the outer region of the
boundary layer with ¢ > u even in regions near the
wall; e.g & * 10u at y &~ 00025 in. Further observe that
the maximum value of the eddy viscosity increases
with an increase in the ¢ angle; e.g. ¢, = 200y at
¢ =450deg and e,,, ~350u at ¢ =1350deg. It
should be noted that the laminar viscosity, y, in the
above is evaluated at the same local conditions as the
corresponding eddy viscosity.

1-0 E
01
y, in [
B ¢ = 135-0 deg
0-01 |-
o 8 =90-0deg
i 8 = 45'0 deg
0-001 = | Ll PRy
1 10 100 1000
£
M

FiG. 9. Eddy viscosity distributions at various angular
locations under supersonic conditions.

5. CONCLUDING SUMMARY

The above-presented results of the current investi-
gation indicate that numerical calculation of the three-
dimensional compressible turbulent boundary layer on
a sharp cone at incidence in a supersonic stream is
indeed feasible and reasonable, based on comparisons
with experimental measurements. The assumption of a
locally similar turbulent boundary-layer analysis
neglecting “upstream history” appears to result in
acceptable predictions of the mean flow profiles, in-
cluding crossflow, when used in conjunction with a
three-dimensional invariant turbulence scalar eddy
viscosity model. The degree of success experienced in
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the present investigation indicates that the scalar eddy
viscosity approach should be applicable to numerical
calculation of general three-dimensional compressible
turbulent boundary-layer flows which do not separate.
Application of the present method to three-dimensional
turbulent boundary-layer flows on yawed sharp cones

at

hypersonic speeds including heat transfer effects

may be found in the recent report by Adams [28].
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COUCHE LIMITE TURBULENTE TRIDIMENSIONNELLE
ET COMPRESSIBLE SUR UN CONE EFFILE EN INCIDENCE
DANS UN ECOULEMENT SUPERSONIQUE

Résumé-— On présente le calcul numerique de la couche imite turbulente ¢t tridimensionnelic sur un

cone effilé, en incidence dans un écoulement supersonique. Le modele théorique est basé sur 'intégration,

par la méthode des differences finies, des ¢quations de la couche limite turbulente. On utilise un

modele de turbulence tridimensionnelie qui introduit une viscosité turbulente scalaire, Une comparaison

de cette théorie avec des mesures sur la structure tridimensionnelle de la couche limite (profils de vitesse

et de température) et sur la direction des lignes de courant (obtenue par une technique d'écoulement
d'huile), révele un bon accord.
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DREIDIMENSIONALE KOMPRESSIBLE TURBULENTE GRENZSCHICHT
AN EINEM SCHARFEN EINLAUFKEGEL IN UBERSCHALLSTOMUNG

Zusammenfassung—Es wird eine analytische Methode der numerischen Berechnung einer dreidimen-
sionalen turbulenten Genzschicht an einem scharfen Einlaufkegel unter supersonischen Strémungs-
bedingungen angegeben. Das theoretische Modell beruht auf einer impliziten Integration endlicher
Differenzen der maBgebenden Gleichungen fiir die dreidimensionale turbulente Grenzschicht in Ver-
bindung mit einem dreidimensionalen skalaren Scheinreibungsmodell fiir Turbulenz. Der Vergleich der
angegebenen Theorie mit ausfithrlichen Messungen der dreidimensionalen turbulenten Grenzschicht-
struktur (Geschwindigkeits-und Temperaturprofile) sowie der Richtung der Stromlinien an der Oberfliche
(gewonnen durch Anwendung einer Oelstromtechnik) zeigt gute Ubereinstimmung.

TPEXMEPHBIN COKMMAEMIF TYPBYJIEHTHBIM IO PAHUYHBIM CIION
HA OCTPOM KOHYCE C ¥YIJIOM ATAKH B CBEPX3BYKOBOM ITOTOKE

Annoramus — Jadrca aHAnMTAYECKHH DORX0ON, CBOAAIMNCS K YHCIACHHOMY pacdéry TPEXMEpHOro
TypOyReHTHOTO TOTPaHUYHOIO CI0A Ha OCTPOM KOHYCE C YIVIOM aTakH B YC/AOBHAX CBEPX3BYKOBOIO
Teyenun. TeopeTuyeckas MOACNbL OCHOBAHA HA HEABHOH KOHCYHO-DAZHOCTHOM CXEME MHCAEHHOro
MHTETPHPOBAHHS OCPCOHCHHBIX YPaBHEHHH TPECXMEPHOTO TypOYNEHTHOro MOTPaHMYHOTO CNog IPH
OPHHATHH TpexMepHoH cxanapuoi moaenu TypOynenTHocTH ass Buxpesol Bs3kocTH. OBHapyXeHo
XOpOouIee COOTBETCTBHE MEXAY Hacrosiuedl Teopueit H noapoOHBMU 3IKCUCPHMEHTANBLHLIMH JaH-
HBIMH O CTIDYKTYPE TPEXMEPHOrO TypOYNEHTHOrO HOTPAHHYHOIO CJIOR (ApodHiM CropocTH M
TEMIIEPATYPbI), & TAKKE O KapTHHE HOBEPXHOCTHHIX JIHHHI TOKA, NMONYNCHHbIX ¢ HOMOUILID MeTOAa
MACASHbIX TAECHOK.
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